Mercury (Hg) Isotope Biogeochemistry
نویسندگان
چکیده
منابع مشابه
A Parallel Simulator for Mercury (Hg) Porosimetry
A parallel simulator, based on the Dual Site-Bond Model of complex media, is developed to study Hg intrusion and extrusion processes in the myriad of voids contained in a porous network. In order to reduce the requirements in RAM and computing resources, the porous network is partitioned into several sub-networks distributed in different cluster processors. The simulator uses shared memory to p...
متن کاملSulfur isotope biogeochemistry of the Proterozoic McArthur Basin
Previous geochemical and biomarker studies of the late Paleo-Mesoproterozoic propose a stratified world, with strongly reducing (possibly sulfidic) deep-ocean conditions overlain by an oxygenated surface-ocean and atmosphere. To investigate such a scenario, we look to the structure of the biogeochemical sulfur cycle. We present sulfur (S, S, S, and S in sulfides) isotope data from the McArthur ...
متن کاملHydrothermal impacts on trace element and isotope ocean biogeochemistry
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active...
متن کاملEffects of coastal managed retreat on mercury biogeochemistry.
We investigated the impact of managed retreat on mercury (Hg) biogeochemistry at a site subject to diffuse contamination with Hg. We collected sediment cores from an area of land behind a dyke one year before and one year after it was intentionally breached. These sediments were compared to those of an adjacent mudflat and a salt marsh. The concentration of total mercury (THg) in the sediment d...
متن کاملBacterial oxidation of mercury metal vapor, Hg(0).
We used metalloregulated luciferase reporter fusions and spectroscopic quantification of soluble Hg(II) to determine that the hydroperoxidase-catalase, KatG, of Escherichia coli can oxidize monatomic elemental mercury vapor, Hg(0), to the water-soluble, ionic form, Hg(II). A strain with a mutation in katG and a strain overproducing KatG were used to demonstrate that the amount of Hg(II) formed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Environmental Chemistry
سال: 2009
ISSN: 1882-5818,0917-2408
DOI: 10.5985/jec.19.1